Resolving clinically relevant short read deficient homologous sequences using a novel CRISPR-CAS mediated targeted long read sequencing method.

Ma Z1, Kothandaraman A1, Bakludziane J1, Guo P1, Brown K6, Siddique A1, Ranganathan S5, Armstrong M8, Hagde M1

1PerkinElmer, Waltham, MA
2Jumpcode Genomics, San Diego, CA

Introduction

Short read genome and exome sequencing (GS/ES) along with advanced bioinformatic tools have been widely adopted in clinical settings due to the significant advantages over Sanger sequencing. Despite the advancements there are still numerous genomic regions of clinical utility that cannot be resolved due to high sequence homology with other regions of the human genome. Longer read lengths and paired end reads have proven helpful but remain incomplete. Synthetic long reads, optical mapping, Hi-C, along with brute force long range PCR and sanger sequencing have been able to resolve some of these evolutionary artifacts but are impractical for most clinical laboratories. A cost-effective solution for targeted long read sequencing is needed. Here we present work towards a novel long read targeted sequencing method that combines the in-vitro use of the CRISPR-Cas9 system with highly accurate PacBio sequencing using high molecular weight gDNA.

Figure 1a

Donutiated DNA Template
random priming, terminate with biotinylated dNTPs
bind to streptavidin beads
complementary strand generation
digested with CRISPR-Cas9
dsDNA released and retained

NGS Library Prep

Figure 1b

postPCR strand re-ligation
reverse transcription
template switching
cDNA amplification
CRISPR Cas9 digestion
fragmented target DNA
cleanup
PacBio library generation

Results

On bead targeted CRISPR-Cas9 cleavage highly enriches for the region of interest.

Figure 2 shows an IGV coverage plot of the E. coli MinCDE locus. Read coverage over the MinCDE locus reaches a level of 20,000-fold with low background coverage of the surrounding areas.

Figure 2

IGV Coverage Plot of MinCDE Locus

CRISPR-Cas9 is effective at depleting long cDNA fragments.

Figure 3a shows a histogram of PacBio sequencing read counts (y-axis) binned by reads length (x-axis) for untreated (blue) and treated (orange) sample Sc-A. A shift is observed in the library size of the treated sample due to CRISPR-Cas9 targeted removal of coding ribosomal and mitochondrial RNA transcripts from the library. The effect of this removal is seen in the Figure 3b where the combined percent of reads (y-axis) aligning to these genes is 15.96%-17% in the control and 0.14%-0.12% in the depleted samples Sc-A and Sc-B, respectively. This represents a depletion rate of 99.2%.

Figure 3a

Full-length Read Distribution, Control versus Depleted

Figure 3b

Depletion of Coding Ribosomal and Mitochondrial Genes

CRISPR-Cas9 depletion enables effective depletion of large transcript fragments with low bias.

PacBio sequencing reads were generated for depleted and control samples and the transcripts per million were calculated per gene. Figure 4 shows the comparison of gene expression levels between control (x-axis) and depleted (y-axis) samples. The graph clearly shows effective depletion of targeted coding ribosomal and mitochondrial transcripts. In addition, depletion exhibits low bias between control and depleted samples.

Figure 4

Transcript abundances, control versus depleted

Conclusions

• CRISPR-Cas9 cleavage and enrichment can be applied to fragments bound to beads.

• The application of CRISPR-Cas9 cleavage to fragments bound to beads provides the ability to highly enrich for regions of interest.

• The programmability of the CRISPR-Cas9 system, enables the design of guides to enrich for clinically relevant genes with complex homologous areas in the genome.

• CRISPR-Cas9 digestion is highly effective on long fragments.

• The combination of these methods would provide a novel approach for enrichment of clinically relevant genes with complex homology while generating long read sequences that provide full length information across the gene.

Future Work

Future work will focus on combining the two methods presented into a single workflow that can be sequenced on short or long read sequencing systems.